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Game plan

I took a hint from Bishop: concrete mathematical activity first, philosophy
later if I have time (but come talk to me about philosophy).

1 Introduction

2 One-variable equations

3 One-variable: infinite case

4 Multiple variables

5 Philosophy
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Groups I

A well-known result from Algebra 1:

Theorem

If x2 = 1 holds for every element of a group G, then G is Abelian (i.e.
xy = yx for all x , y ∈ G).

A lesser-known approximate version:

Theorem

Take a finite group G. Then either

the number of solutions to the equations x2 = 1 in G is less than or
equal to 3

4 |G |; or
all elements of G solve x2 = 1 (and so G is Abelian).

The probability that a random x fails to satisfy x2 = 1 is high (≥ 1
4).
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Groups II

Another well-known example:

Theorem ([Gustafson, 1973])

Take a finite group G. Then either

the number of pairs (x , y) that solve the equation xy = yx in G is
less than or equal to 5

8 |G |2; or
G is Abelian, so all |G |2 pairs solve the equation xy = yx.

The probability that random x , y fail to satisfy xy = yx is very high (at
least 3

8). “Deceptive” groups, which only barely fail to be Abelian, do not
exist.
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The general setting

Definition

Take a first-order language L, a finite L-structure M, and an L-formula
φ(x1, . . . , xn) in n free variables. We call the quantity

|{(a1, . . . , an) ∈ Mn | φ(a1, . . . , an)}|
|M|n

the degree of satisfiability of the formula φ in the structure M, and denote
it dsM(φ).
If we can find a constant ε > 0 such that for every finite model M of the
theory T , we have either

1 dsM(φ) = 1; or else

2 dsM(φ) ≤ 1− ε,

then we say that the formula φ has finite satisfiability gap ε in T .
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Results in groups

Many group-theoretic (and other) equations display this phenomenon:

Theorem

The equation x2 = 1 has finite satisfiability gap 1
4 (easy). The equation

x3 = 1 has finite satisfiability gap 2
9 (not so easy, [Laffey, 1976]). Nobody

knows if x5 = 1 has finite satisfiability gap, and it’s not 4
25 (in fact, less

than 1
25 , due to Terry Wall).

Theorem (K. 2019)

The equations xy2 = y2x, xy3 = y3x, xy−1 = yx and an infinite family of
other similar commutator equations in powers −1, . . . , 3 have finite
satisfiability gaps - we know tight bounds and can construct groups in
which they are taken.

See also [Lescot, 1995] and the survey of [Mann, 2018].
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Structural information

Might look “toy” at first, but structural information can be obtained from
these numbers. One example:

Theorem ([Barry et al., 2006])

If dsG (xy = yx) is larger than 1
3 , then G is solvable.

Theorem ([Guralnick and Robinson, 2006])

The only non-solvable groups with dsG (xy = yx) larger than 0.075 are
A5 × H where H is Abelian.
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Other applications

Applications to counting algebraic operations (e.g. in a set with two
associative operations ×,+, the equation a× b = a+ b has finite
satisfiability gap).

Immediate applications to property testing and black-box algebra –
e.g. O(n2) associativity testing.
⋆-semiring results: applications to testing regex engines.

Closely related to isocliny in groups and rings ([Dutta et al., 2017]).
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Degree of satisfiability in HAs
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Heyting algebras

Definition

A Heyting algebra (H,⊥,⊤,∧,∨,→) is a bounded lattice in which
c ≤ a → b precisely if c ∧ a ≤ b.

Heyting algebras have an equational presentation:

x → x = ⊤;

x ∧ (x → y) = x ∧ y ;

y ∧ (x → y) = y ;

x → (y ∧ z) = (x → y) ∧ (x → z);

+ bounded lattice axioms (⊥,⊤,∧,∨).
We define ¬x as x → ⊥.
A formula φ of intuitionistic propositional logic is a tautology precisely if
the equation φ = ⊤ is an identity in every Heyting algebra H.
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Classical Principles

Definition

A classical principle is an equation φ in the language of Heyting algebras
that holds in an algebra H precisely if H is a Boolean algebra.
Equivalently, adding (all substitution instances of) φ to intuitionistic
propositional logic yields classical logic.

Examples:

x ∨ ¬x = ⊤ (excluded middle),

¬¬x = x (double-negation elimination),

(x → y) → x = x (Peirce’s law),

¬y → ¬x = x → y (contrapositive principle),

(¬x → y) → (x → y) → y = ⊤ (LEM - eliminator form),

x ∨ y = ¬(¬x ∧ ¬y) (De Morgan duality),

x → y = ¬x ∨ y (material implication).
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Main Question

How well can classical principles hold in non-Boolean HAs?
Which equations have finite satisfiability gap?

Zoltan A. Kocsis Degree of Satisfiability in IPC 27 June 2023



13/42

One-variable equations
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The one-variable case

Joint work with Ben Bumpus (University of Florida, Gainesville).
([Bumpus, K., 2022])

We classify all one-variable equations w.r.t. finite satisfiability gaps
(not just classical principles).

Possible because the free HA on one generator is well-understood
(Rieger, Nishimura).
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The Rieger-Nishimura Lattice

d0 = i0 = ⊥
d1 = x
dn+1 = in ∨ dn

i∞ = d∞ = ⊤
i1 = ¬x
in+1 = in → dn
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Classification

Theorem ([Rieger, 1952])

In a Heyting algebra, every system of equations in one free variable x is
logically equivalent to an equation of the form dn = ⊤ or in = ⊤, where
n ∈ N∞.

So it’s enough to classify each dn and in with respect to finite gap.

Theorem (Bumpus and K., 2022)

The following equations have finite satisfiability gap:

1 x = ⊤ (d1),

2 ¬x = ⊤ (i1),

3 x ∨ ¬x = ⊤ (d2) – excluded middle.

No other one-variable equation has finite satisfiability gap. In particular,
¬¬x → x = ⊤ (i3) doesn’t.
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Specific cases

Theorem (Bumpus and K., 2022)

In every finite Heyting algebra H, we have either

1 dsH(x ∨ ¬x = 1) = 1; (and then H is Boolean) or else

2 dsH(x ∨ ¬x = 1) ≤ 2
3

i.e. d2 has finite satisfiability gap ε = 1
3 .

Takeaway: LEM cannot fail “deceptively”, just barely. Contrast with DNE:

Theorem (Bumpus and K., 2022)

For each n ∈ N, there is a Heyting algebra H where

dsH(¬¬x = x) > 1− 1

n
.
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A word on the proofs

The equations x = ⊤ and ¬x = ⊤ have one solution each, so trivially
have gap 1

2 .

We prove the 2
3 gap for x ∨ ¬x = ⊤ in three different ways.

Structural version: x ∨ ¬x = ⊤ implies x = ⊤ or ¬x = ⊤ precisely if
H is directly irreducible. Induction with base case the irreducible
algebras. 2

3 comes from the 3-chain as a Heyting algebra.
But we have an infinite version of the theorem, and this proof doesn’t
generalize. So we give another one, which does.

For the other equations, we construct families of Heyting algebras.
Special cases for i2, i3, a general method for the rest.
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. . .

A family of Heyting algebras showing that d5 = ⊤ has no finite gap.
The element x not satisfying d5 = ⊤ is marked in white.
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Followup Work

Similar results hold in other algebras related to logic.

E.g. you can define a notion of conjunction and disjunction in
commutative BCK-algebras.

Matt Evans (Oberlin) showed, among other results:

Theorem ([Evans, 2022])

In a bounded commutative BCK-algebra, x ∨ ¬x = ⊤ has finite
satisfiability gap 1

3 . But ¬¬x = x does not.

Proof.

First part: follows from the structure theorem for commutative
BCK-algebras. Second part: direct construction.
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One-variable: infinite Heyting algebras
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Infinite satisfiability gap

This looks very finite.

In groups: index allows quantitative infinite generalization.

Powerful results: ds reveals more about the structure of infinite
groups than about finite ones ([Antoĺın et al., 2016],
[Martino et al., 2018])!

In Heyting algebras: no comparable gadget. But the qualitative
approach still works:

Definition

If for every infinite Heyting algebra H, we have either

1 {(a1, . . . , an) ∈ Mn | ¬φ(a1, . . . , an)} = ∅; or else
2 an injective map

{(a1, . . . , an) ∈ Mn | φ(a1, . . . , an)} ↪→
{(a1, . . . , an) ∈ Mn | ¬φ(a1, . . . , an)}

then we say that the formula φ has infinite satisfiability gap.
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One-variable: infinite satisfiability gap

The exact same results hold: d1, i1,d2, have satisfiability gap, but
nothing else does.

Here, our proof uses LEM, and even cardinal arithmetic. But
constructively we have (for good notions of finite):

Theorem (Bumpus, K., 2022)

In a non-Boolean Heyting algebra H, if x ∨ ¬x ̸= ⊥ has finitely many
solutions, then H is finite.

Using topological semantics, we get the following

Corollary (Bumpus, K., 2022)

An infinite T0 topological space is either discrete or has more non-closed
open sets than clopen sets.
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Multiple variables
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Multiple variables

Classification for multi-variable equations: out of (my) reach.

Free HA on two generators already inscrutable.

But our favorite classical principles have two or more variables (and
have philosophical interest):

1 (x → y) → x = x (Peirce’s law),

2 ¬y → ¬x = x → y (contrapositive principle),

3 (¬x → y) → (x → y) → y = ⊤ (LEM - eliminator form),

4 x ∨ (x → y) = ⊤ (LEM - bottomless),

5 x ∨ y = ¬(¬x ∧ ¬y) (De Morgan duality),

6 x → y = ¬x ∨ y (material implication)

7 your favorite principle here (exercise!)

We can use the 1-variable classifiation as a stepping stone, and say
something about classical principles.
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About classical principles

Idea: tackle two-variable equations using one-variable formulas.

Theorem

Take a theory T over a first-order language L, and a formula
φ(x1, . . . , xn, y) in L. If φ(x1, . . . , xn, y) has finite satisfiability gap in T ,
then so does ∀y .φ(x1, . . . , xn, y).

But one-variable formulas have much worse behavior than equations! E.g.
∀x .x ∨ (x → y) = ⊤ does not define an algebraic set.
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Pitts quantifier theory to the rescue

A celebrated result of ([Pitts, 1992]) lets us “internalize”
second-order propositional quantification in the regular intuitionisitic
propositional calculus.

We let
A
denote Pitts’ universal quantifier.

A
x .x ∨ (x → y) is the best

one-variable approximation of the 2nd order formula ∀x .x ∨ (x → y).

Idea: use Pitts quantifiers to reduce to the one-variable case.

Complication:

Theorem

Take an equation φ(x , y) = ⊤. If φ(x , y) = ⊤ has finite satisfiability gap,
then so does the formula ∀y .φ(x , y) = ⊤.

The analogue FAILS if you replace the formula ∀ with the equation
(
A
y .φ(x , y)) = ⊤.
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Fails, but works

We can, however, fix the theorem in a special case:

Theorem (Bumpus and K., 2022)

Take an equation φ(x , y) = ⊤ where φ(x , y) is a classical principle. If
φ(x , y) = ⊤ has finite satisfiability gap in T , then so does the equationA
y .φ(x , y) = ⊤.

This result actually holds.
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Pitts test

By computing
A
x .φ(x , y), the following have no satisfiability gap:

1 (x → y) → x = x (Peirce’s law),

2 ¬y → ¬x = x → y (contrapositive principle),

3 (¬x → y) → (x → y) → y = ⊤ (LEM - eliminator form),

4 x ∨ (x → y) = ⊤ (LEM - bottomless).

It settles about 90% of questions you might have. But inconclusive on:

1 x ∨ y = ¬(¬x ∧ ¬y) (De Morgan duality),

2 x → y = ¬x ∨ y (material implication)

where the Pitts reduct is x ∨ ¬x = ⊤. The former has gap 1
3 (K. 2023),

the latter has no gap (but the proof is difficult (Bumpus and K., 2022).
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Philosophy
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Logical anti-exceptionalism

A philosophical position associated mainly with Quine, Maddy, Hjortland,
Williamson. Short version:

Logic: just another science, revised empirically.

Not analytic, not a priori.

Accordingly, one can compare and choose between logical theories using
the usual scientific standards (the same way we’d choose between scientific
theories).

[Hjortland, 2019]’s summary of Williamson’s account has worked-out
examples.
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Anti-exceptionalist desideratum

(My formulation, but one that mostly follows [Williamson, 2013]):
sometimes, we can observe/verify/falsify propositions via
logic-independent (e.g. physical) means.

Assume that

1 A1, . . . ,An,B are all independently verifiable/falsifiable;

2 A1, . . . ,An are independently verified; and

3 B follows from A1, . . . ,An according to our logic L.

If we can then independently falsify B, that counts as
scientific evidence against our logic L.
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Application

If we’re unsure whether classical or intuitionistic logic applies to
observational phenomena, we can apply the degree of satisfiability results
for LEM. Whenever the classical laws of propositional logic fail in a given
setting, the evidence disconfirming them should be abundant. In fact:

Theorem (Bumpus and K., 2022)

For any natural n ≥ 2, let fn be one of the formulae {in+1, dn} in the
Rieger-Nishimura lattice. There is a strictly monotone function g such
that, given any Heyting algebra H, if dsH(d2) >

2
g(n) , then dsH(fn) = 1.

So if some observational phenomenon is governed by pure intuitionistic
logic, then LEM fails for almost every proposition.

Hope: similar results could lead to an argument for the existential
soundness of classical reasoning (but don’t hold your breath).
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Thank you!
Questions?
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X: LEM Proof

Proof.

Take any maximal non-central element σ ∈ S. The map f : Z(H) → S
given by the equation

f (x) =

{
σ ∧ x if σ ∨ x = ⊤
σ ∧ ¬x otherwise

is well-defined and two-to-one. If a ∨ b and a ∧ b both belong to Z(H),
then so do a and b, which guarantees well-definedness. Injectivity: take
two central elements c , d such that σ ∨ c = ⊤ and σ ∨ d = ⊤. Assume
that f (c) = σ ∧ c = σ ∧ d = f (d). Then we have that

c = c ∨ (σ ∧ c) = c ∨ (σ ∧ d) = (c ∨ σ) ∧ (c ∨ d) = ⊤ ∧ (c ∨ d) = c ∨ d .

By a similar argument, we have d = c ∨ d . Thus c = c ∨ d = d .
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X: Structural Information

We do get some:

Proof.

Let H be a finite Heyting algebra. If dsH(x ∨ ¬x = ⊤) ≥ 1/2, then
Z(H) = H¬¬. Since Z(H) and H¬¬ are both Boolean algebras, their sizes
are powers of two. Since Z(H) ⊆ H¬¬, this means that either
Z(H) = H¬¬ or H¬¬ = H. In the latter case double-negation elimination
holds everywhere. But then H is a Boolean algebra which implies that the
law of excluded middle holds everywhere as well.

We note that the 1
2 bound obtained above is not tight. A tight bound (25)

follows immediately from other results.
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X: Pitts Quantifier Theorem

Theorem ([Pitts, 1992])

Take a finite sequence of propositional variables x, and a propositional
variable y not contained in x. Let Φ(x , y) denote a formula of intuitionistic
propositional calculus containing only the variables in x , y. Then we can
find a propositional formula

A
y .Φ(x , y) so that the following all hold:

1 The formula
A
y .Φ(x , y) contains only the variables in x.

2 For any propositional formula Ψ(x), intuitionistic logic proves the
implication Ψ(x) →

A
y .Φ(x , y) precisely if it proves Ψ(x) → Φ(x , y).

3 Given any propositional formula Ψ, intuitionistic logic proves all
implications

A
y .Φ(x , y) → Φ(x ,Ψ), where Φ(x ,Ψ) denotes the

formula obtained by substituting the formula Ψ for the propositional
variable y everywhere in Φ.
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X: Rieger-Nishimura Lattice

Definition

We define the sequences d and i of disjunctive and implicative
Rieger-Nishimura terms by mutual recursion as follows:

d0 = ⊥, i0 = ⊥,

d1 = y , i1 = ¬y ,
dn+1 = in ∨ dn, in+1 = in → dn,

d∞ = ⊤ i∞ = ⊤.

The Rieger-Nishimura lattice consists of the terms dn, in for all
n ∈ N ∪ {∞} in the free variable y , equipped with the logical ordering.

[Kocsis, 2020] [Bumpus and Kocsis, 2022]
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